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1 Introduction

Clojure is a lisp–like language running on the Java
Virtual Machine[7]. The language’s default im-
mutable data structures and sophisticated Software
Transactional Memory (STM) system make it well
suited for parallel programming[9]. Because Clo-
jure runs on the Java Virtual Machine, Clojure
developers can take advantage of existing cross–
platform parallelism libraries, such as Java’s excellent
ExecutorService framework, to write parallel code.

However, taking advantage of Clojure’s parallel
potential is not entirely straightforward. STM has
proven to be very successful construct for concurrent
programming[8], but these constructs are often too
low level to be of much use to developers whose cen-
tral concerns are not parallelism[6].

As a result, there are a variety of libraries designed
to allow developers to take advantage of the paral-
lelism potential in Clojure. Clojure built ins such
as pmap1 and reducers2 library provide data parallel
sequence manipulation and transformation functions.
Third—party libraries like Tesser3 and Claypoole4

provide more data parallel APIs with slightly differ-
ent goals than the builtin functions. Developers have
a good relationship with data parallel problems[11],
but Clojure’s nature as a functional language with
immutable structures also makes it possible to eas-
ily exploit control parallelism (also known as task
parallelism[1, 12]).

Using Clojure’s macro system, we have imple-
mented a set of macros which allow developers to take
advantage of Clojure’s task parallelism potential. We
have shown that it is possible to attain reasonable
degrees of parallelism with minimal modification to
existing serial code.

1https://clojuredocs.org/clojure.core/pmap
2http://clojure.org/reference/reducers
3https://github.com/aphyr/tesser
4https://github.com/TheClimateCorporation/claypoole

2 Related Work

Clojure has access to all of the JVM, so it has ac-
cess to the Java ForkJoinPool library[10]. The
ForkJoinPool library allows Java programmers to
create lightweight, recursive tasks which are executed
by a thread pool. Each thread maintains a queue
of tasks to work on. When a thread runs out of
tasks, it steals tasks from other threads. Work steal-
ing has been used as a scheduling mechanism isn a
variety of modern threading libraries and has been
very successful [10, 4, 5] Users of a ForkJoinPool

create a subclass of RecursiveTask to compute the
value of some function. Each of these tasks may
create more RecursiveTasks, submit them to the
ForkJoinPool, then wait for their subtasks to com-
plete, without blocking any threads in the pool. Clo-
jure programmers can use the ForkJoinPool libraries
from Clojure, but the interface isn’t exactly program-
mer friendly (or idiomatic).

Clojure also has built in support for task paral-
lelism via future1. Each call to future spawns a
thread to result of some function. When a user is
ready to access the computed value, they deref the
future. deref will block until the value is computed.
For a user, future seem like a natural way to paral-
lelize recursive functions. Unfortunately, future does
not work well when a large number of tasks are cre-
ated. Because thread creation overhead is high, users
must be careful not to create an excessive number of
threads or create threads which do too little work.

Claypoole’s implementation of future offers many
improvements to the built in future. The Claypoole
implementation executes tasks in a fixed sized thread
pool, but, the executing thread will block if the task
creates a new task, then immediately derefs it. This
means that a programmer must be very careful not to
create tasks in a Claypoole thread pool which depend
on other tasks that will also be submitted to the pool.

1https://clojuredocs.org/clojure.core/future
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The work in this paper is conceptually similar, but
the interface I have used differs dramatically from the
future interface. My code also creates many tasks,
but these tasks are created on a Java ForkJoinPool,
so the tasks are much more lightweight, and they can
be composed recursively.

In Common Lisp, the lparallel2 library and
macros are available. The macros I have implemented
are very similar to the macros lparallel provides,
but, Common Lisp programming conventions are not
as ideal for these kinds of macros. Common Lisp pro-
grammers also do not have access to the battle tested
ForkJoinPool implementation.

2.1 Other languages

In other languages, frameworks like Cilk++3,
OpenMP4, Threading Building Blocks5 have been im-
plemented. Some of these require compiler support
and complex dependence analysis to guarantee cor-
rectness. The macros I’ve implemented are an at-
tempt to bring some of the niceties of these libraries
and compiler extensions to Clojure, without the need
to compiler support or complicated dependence anal-
ysis.

3 Mostly Pure Functions

Before discussing the macros we’ve implemented, we
need to loosely define a “mostly pure” function. A
mostly pure function is a thread—safe function with
no side effects directly impacting the values of user-
defined values, at the current level of abstraction. A
mostly pure function isn’t actually pure (from a com-
piler’s perspective), but, in many cases cases, the or-
der of certain side effects may not matter to a pro-
grammer. For example, a programmer writing a web
scraper may not care what order (download file1)

and (download file2) execute in, but the order may
matter to a programmer writing a I/O constrained
server. Mostly pure functions capture this idea; it
may be the case that a function isn’t actually pure,
but we want to treat it as pure. Many Clojure func-
tions fit this definition due to Clojure programming
conventions and default immutable data structures.

Calls to mostly pure functions can be reordered (or
interleaved) without impacting the values of user vari-
ables, although the change may impact I/O behavior

2https://lparallel.org/overview/
3https://www.cilkplus.org/
4http://openmp.org/wp/
5https://www.threadingbuildingblocks.org/

and output order of a program. When a program-
mer tells us a function is mostly pure, we can reorder
them subject to the following constraints:

1. A call to a mostly pure function f in a block B
in a function’s control flow graph can safely be
moved to a block P for which all paths in the
graph though P also go through B. Figure 1
provides and example of this constraint.

2. All of the arguments to the function are available
at any block P which is a candidate location for
the function call. See Figure 2 for an example.

The first constraint is introduced so that we avoid
network requests or print statements which never
would have originally occurred along any given path
of execution. We do not want to allow reordering
which introduces new computations or would result
in unpredictable performance. The second constraint
ensures that we don’t ever violate the most basic of
correctness properties. A more detailed algorithm for
finding safe locations for portable mostly pure func-
tions in Clojure code is discussed in Section 5.1

(do ...

. . .

(if (pred? ...)

false

. . .

...

true

. . .

(f ...)

Figure 1: The call to the mostly pure function f can
only be moved to the nodes with solid borders

(do ...

(let [a (...)]

...

(let [b (...)]

(f a)

Figure 2: The call to the mostly pure function f can
only be moved to the nodes with solid borders
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(parlet

[a (foo value1)

b (foo value2)]

;; some other code here

(+ a b))

(a) Example of a parlet form

(let

[a (fork (new-task (fn [] (foo 1))))

b (fork (new-task (fn [] (foo 2))))]

;; some other code here

(+ (join a) (join b)))

(b) An expanded parlet form

Figure 3

4 parlet

The first of the parallel macros is called parlet. The
parlet macro has exactly the same behavior as Clo-
jure’s let, but it evaluates all of its bindings in par-
allel. For example, suppose I had some long running
function foo. I need to add the result of two calls to
this function. In Figure 3, we use parlet to make
two calls to foo, then add the results.

In this example, the expressions (foo value1) and
(foo value2) are both evaluated as RecursiveTasks
in a ForkJoinPool. The calls to foo are both forked
immediately, then we attempt to evaluate the body of
the parlet. Each use of a and b is replaced with a call
to join, to get the computed value. This means that
the code in the body of the let which does not depend
on the computations of a and b can execute without
delay. Additionally, since the ForkJoinPool is de-
signed for recursive workloads, tasks which are cur-
rently executing can create new tasks, submit them to
the pool, then wait for the task to complete, without
blocking tasks created by other parlet calls. This
means that a programmer does not have to worry if
functions called in the bindings of a parlet form also
use parlet.

4.1 Dependencies

The parlet macro also supports simple dependency
detection. Clojure let forms can use names defined
previously in the same let. The bindings are evalu-
ated from first to last.

(parlet [a 1

b (+ 1 a)]

a)

Figure 4: A parlet containing a dependency

Without the parlet, the let form in Figure 4 would
evaluate to 2. If we plan on evaluating each binding
in parallel, we can’t allow the bindings to have depen-
dencies. So, the parlet macro will halt the compiler
and report an error to the user if any dependencies
are found in the parlet form.

4.2 Correctness

This transformation is only safe when foo (and more
generally, any function call in the bindings) is a
mostly pure function. If the programmer chooses
to use a parlet form, we assume that the functions
called in the bindings are mostly pure. The simple
dependency check combined with the programmers
promise that all function called are mostly pure al-
low us to ensure correct parallelism with this macro.

5 defparfun

defparfun allows a programmer define a func-
tion which will parallelize its recursive calls. The
defparfun macro supports a granularity argument,
allowing the programmer to specify when they would
like to stop creating additional parallel tasks. The
macro emits the expression provided for granularity
inside of an if statement at the top of the function,
so the programmer can use any arbitrary condition,
including a condition dependent on the function’s ar-
guments, to decide when to stop spawning new tasks.
Figure 7b defines a parallel Fibonacci function, which
will only execute in parallel when the value of it’s ar-
gument is greater than 35. If a programmer choses to
use defparfun to define a function, we assume that
the function being defined is mostly pure.

5.1 Implementation

In Clojure, any form which introduces control flow
will eventually expand to an if form. Any form
which introduces new bindings (including Clojure’s
destructuring mechanisms) will eventually expand to
a let form. Because the constraints on movement
of mostly pure functions only depend on control flow
and variable bindings, we only need to make decisions
about mostly pure function calls near if forms and
let forms, in the fully expanded code for a function.

When provided a function to manipulate, this
macro first expands all of the other macros in the
function body, to get the nice property described
above. Then, the macro recursively crawls the func-
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(defn f [a]

(if (pred? ....)

(do ...)

(do ... (f (+ 1 a)))))

(a) Input code

(defn f [a]

(if (pred? ....)

(do ...)

(do ... e1)))

(b) Replace call with new variable

(defn f [a]

(if (pred? ....)

(do ...)

(let [e1 (f (+ 1 a))]

(do ... e1))))

(c) The if forces a let

(defn f [...]

(let [a ...]

(let [b ...]

(f (+ 1 a)))))

(d) Input code

(defn f [...]

(let [a ...]

(let [b ...]

e1)))

(e) Introduce a new variable

(defn f [...]

(let [a ...]

(let [e1 (f (+ 1 a))]

(let [b ...]

e1)))))

(f) The let which defines a forces a let

Figure 5: Moving a recursive function call

tion body, looking for recursive call sites. If a call
site is found, the recursive call (in the function body)
is replaced by a newly introduced variable, and we
hold onto the original recursive call. When all of the
subexpressions for a given expression have been eval-
uated and transformed, we check if the expression is a
if form or a let form. If we are sitting on a if form,
all of the bindings introduced by the true branch and
by the false branch are emitted in a new let expres-
sion (Figures 5a, 5b, and 5c). This guarantees that
condition 1 holds (Section 3). If we are sitting on a
let form, any of the bindings which depend on the
expressions introduced by the let form are emitted.
The remaining bindings continue to trickle upwards
(see Figures 5d, 5e, and 5f). This guarantees that
condition 2 holds.

After this transformation, it is possible to replace
the let forms which bind the function results to their
values with parlet forms providing the same bind-
ings. The introduction of the parlet form intro-
duces parallelism, so each recursive call will execute
in the ForkJoin pool, in parallel. To complete the Fi-
bonacci example, the defparfun expansion is shown
in Figure 6.

Because the transformation does not violate any of
the properties defined for mostly pure functions, this
transformation is safe.

6 Benchmarking

To run benchmarks, I used Google’s Cloud Com-
pute virtual machines. For each trial, a virtual ma-
chine was created. Each virtual machine had either
1, 2, 4, or 6 cores and 6 gigabytes of RAM. First,
the serial version of the code was run, then, on the
same machine, the parallel version of the code was

(defn fib [n]

;; granularity check

(if (< n 35)

(if (or (= 0 n) (= 1 n))

1

(+ (fib (- n 1))

(fib (- n 2))))

;; recursive case

(if (or (= 0 n) (= 1 n))

1

(parlet [expr17300 (fib (- n 1))

expr17301 (fib (- n 2))]

(+ expr17300 expr17301)))))

Figure 6: Transformed Fibonacci function

run. After both trials finished running, the data
was copied back to my local machine and the vir-
tual machine was destroyed. For every pair of se-
rial/parallel executions, the speedup was computed.
These per–machine speedups are used to generate the
plots shown.

To workaround the difficulties JVM benchmarking
introduces, the Criterium6 library was used for Clo-
jure code and the Caliper7 library was used for Java
code. Because each benchmark was run on it’s own
virtual machine with a constrained number of cores,
the number of threads the JVM could create was con-
trolled (including threads used for garbage collection)

6.1 Fibonacci

First we will look at the classical recursive Fibonacci
example. Figure 7a shows the serial benchmark code;

6https://github.com/hugoduncan/criterium
7https://github.com/google/caliper
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(defn fib [n]

(if (or (= 0 n) (= 1 n))

1

(+

(fib (- n 1))

(fib (- n 2)))))

(a) Serial Fibonacci function

(defparfun fib [n] (< n 35)

(if (or (= 0 n) (= 1 n))

1

(+

(fib (- n 1))

(fib (- n 2)))))

(b) Fibonacci function with defparfun added

Figure 7

7b shows the code parallel benchmark code. In Fig-
ure 8 the results from many trials of this code run-
ning 1, 2, 4, and 6 cores. Each benchmark computes
(fib 39). We see that we get about a 3x speedup
with 6 cores. This speedup isn’t quite what we would
hope to see, but, as can be seen in Figure 9, the
handwritten Java ForkJoinPool implementation gets
about the same speedup with 6 cores on these virtual
machines. Previous ForkJoinPool benchmarks have
shown much better speedups for similar code[10], so
I suspect that the virtual machine configuration is
somewhat responsible for the discrepancy in results.
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Figure 8: Fibonacci Clojure (defparfun) Performance

The large variance we see in the Clojure bench-
marks is somewhat disturbing, especially since it does
not show up in the Java results. Since it does not ap-
pear in the Java benchmarks, it is not a result of
variable performance in the Google Cloud Platform
virtual machines. Figure 10 shows the standard de-
viations of the mean runtime for the serial and paral-
lel Clojure Fibonacci functions, along with their Java
counterparts. Notice that the Java results do not have
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Figure 9: Fibonacci Java Performance

nearly as high deviations from mean runtime. While
we cannot completely explain the variability, it seems
to be caused by the increased pressure Clojure’s func-
tion implementation and the ForkJoinPool wrap-
per tasks places on the JVM garbage collector. Ev-
ery Clojure function is an Object created following
the Clojure IFn interface8. When running on the
ForkJoinPool, each function is further wrapped in
a RecursiveTask object, causing additional alloca-
tions. This effectively moves the stack for the re-
cursive function to the heap (eliminating Clojure’s
stack depth limit9). The garbage collector behaves
somewhat non—deterministically, so we believe that
this is the explanation for the large variations in run-
time present in the Clojure results. We can avoid
excessive task creation by controlling the granularity
of parallelism, to an extent. The Fibonacci example
highlights this problem because the function call over-

8http://clojure.org/reference/special_forms#fn
9http://clojure.org/about/functional_programming#

_recursive_looping
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head greatly exceeds the amount of work each call is
doing. We will see an example for which this is not
the case in Section 6.2.

1 2 4 6

Clojure serial
Clojure parallel w/ defparfun
java serial
java fork/join
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Figure 10: Fibonacci standard deviations

6.2 ID3

We also implemented a simple ID310 classifier in Clo-
jure. The code is bit longer, so it is not included
in this paper, but it can be found on this project’s
GitHub page11. For each benchmark, a random 1,000
element dataset was created. Each element of the
dataset was given 100 random features. The ID3 al-
gorithm implementation ran until it was out of at-
tributes to pivot on.

The ID3 code does much more work in each
function call, so the overhead introduced by the
ForkJoinPool wrapper does not impact the results
as much as it does in the Fibonacci benchmark. Fig-
ure 11 shows that we get the 3x speedup we expect
on these virtual machines with the ID3 algorithm.

7 Conclusions and Future
Work

The Clojure macros we’ve implemented perform
transformations which can speed up serial Clojure
code to a degree which matches the speedups attained

10https://en.wikipedia.org/wiki/ID3_algorithm
11https://github.com/dpzmick/auto_parallel
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Figure 11: id3 Clojure (defparfun) Performance

using handwritten Java code, running on the same
hardware. Parallelism is difficult, and automatic par-
allelism is possible[3], but these techniques are com-
plicated and often do not get the desired results and
the research community has begun to feel the need for
explicit parallelism in programs.[2] These macros are
designed to allow programmers whose primary con-
cern is not performance to write explicitly parallel
programs. In a language with a strong STM system
and immutable structures, macros like these are easy
to reason about, making it much simpler for program-
mers to implement explicitly parallel programs.

Macros of this style do not inhibit the program-
mers ability to use the other mechanisms imple-
mented in the language, although interoperability
with them could be improved. For example, one of
the tests which was not discussed in this paper used
the STM system from within a function declared with
defparfun. Benchmarks on this code behaved cor-
rectly and performance improved as expected. How-
ever, if a programmer attempted to use a pmap or
future inside of a defparfun or parlet, the two
systems would create separate thread pools and the
number of created threads would be large, possibly
causing poor performance. There are also a variety
of other useful macros in lparallel12 would be useful
to implement in Clojure.

12https://lparallel.org/
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